A Variational Principle for Model-based Morphing

نویسندگان

  • Lawrence K. Saul
  • Michael I. Jordan
چکیده

Given a multidimensional data set and a model of its density, we consider how to define the optimal interpolation between two points. This is done by assigning a cost to each path through space, based on two competing goals-one to interpolate through regions of high density, the other to minimize arc length. From this path functional, we derive the Euler-Lagrange equations for extremal motionj given two points, the desired interpolation is found by solving a boundary value problem. We show that this interpolation can be done efficiently, in high dimensions, for Gaussian, Dirichlet, and mixture models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control of Hand, Foot and Mouth Disease Model using Variational Iteration Method

In this paper, the optimal control of transmission dynamics of hand, foot and mouth disease (HFMD), formulated by a compartmental deterministic SEIPR (Susceptible-Incubation (Exposed)- Infected - Post infection virus shedding - Recovered) model with vaccination and treatment as control parameters is considered. The objective function is based on the combination of minimizing the number of infec...

متن کامل

Frequency Analysis of Embedded Orthotropic Circular and Elliptical Micro/Nano-Plates Using Nonlocal Variational Principle

In this paper, a continuum model based on the nonlocal elasticity theory is developed for vibration analysis of embedded orthotropic circular and elliptical micro/nano-plates. The nano-plate is bounded by a Pasternak foundation. Governing vibration equation of the nonlocal nano-plate is derived using Nonlocal Classical Plate Theory (NCPT). The weighted residual statement and the Galerkin method...

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

Variational Principle, Uniqueness and Reciprocity Theorems in Porous Piezothermoelastic with Mass Diffusion

The basic governing equations in anisotropic elastic material under the effect of porous piezothermoelastic are presented. Biot [1], Lord & Shulman [4] and Sherief et al. [5] theories are used to develop the basic equations for porous piezothermoelastic with mass diffusion material. The variational principle, uniqueness theorem and theorem of reciprocity in this model are established under the ...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996